A Characteristic-Based Spectral Element Method for Moving-Domain Problems
نویسندگان
چکیده
منابع مشابه
Solution of moving-boundary problems by the spectral element method
This paper describes a novel numerical model aiming at solving moving-boundary problems such as free-surface flows or fluid-structure interaction. This model uses a moving-grid technique to solve the Navier–Stokes equations expressed in the arbitrary Lagrangian-Eulerian kinematics. The discretization in space is based on the spectral element method. The coupling of the fluid equations and the m...
متن کاملSpectral Finite Element Method for Free Vibration of Axially Moving Plates Based on First-Order Shear Deformation Theory
In this paper, the free vibration analysis of moderately thick rectangular plates axially moving with constant velocity and subjected to uniform in-plane loads is investigated by the spectral finite element method. Two parallel edges of the plate are assumed to be simply supported and the remaining edges have any arbitrary boundary conditions. Using Hamilton’s principle, three equations of moti...
متن کاملDevelopment of a Moving Finite Element-Based Inverse Heat Conduction Method for Determination of Moving Surface Temperature
A moving finite element-based inverse method for determining the temperature on a moving surface is developed. The moving mesh is generated employing the transfinite mapping technique. The proposed algorithms are used in the estimation of surface temperature on a moving boundary with high velocity in the burning process of a homogenous low thermal diffusivity solid fuel. The measurements obtain...
متن کاملA Spectral-Element Method for Transmission Eigenvalue Problems
We develop an efficient spectral-element method for computing the transmission eigenvalues in two-dimensional radially stratified media. Our method is based on a dimension reduction approach which reduces the problem to a sequence of one-dimensional eigenvalue problems that can be efficiently solved by a spectral-element method. We provide an error analysis which shows that the convergence rate...
متن کاملA spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2018
ISSN: 0885-7474,1573-7691
DOI: 10.1007/s10915-018-0876-6